CNC Machining is a manufacturing process in which a set of pre-defined computer codes are used to manipulate how the existing machinery such as lathe, grinder, milling machine, would behave. These codes are generated with the help of CAM software that converts CAD drawing of parts into a series of specific codes that control every aspect of the machining process. From feed rate to tool distance, CNC machining requires almost no human input in order to operated and CNC parts are in many ways better than traditionally manufactured products because failure in any critical component could lead to disastrous consequences. Types of CNC Machining Processes
To put it simply, CNC machines are the same as a traditional machine, but it comes with the added benefit of computer control and sometimes along with multi–axis capabilities. Depending on the operations required, different types of CNC machines are used in the industry. For example, a CNC Lathe can perform machining operations involving cuts in the circular direction and unlike manual lathes; a CNC lathe can also be used for creating complex geometries. Similarly, other CNC machines and as CNC Mill, Water Jet Cutter, Plasma Cutter, and others allow users to perform additional processes that would either be too complex or impossible for a manual machine.
Why CNC Part Machining is becoming Popular Globally?
For any manufacturing plant, opting for CNC Machining instead of traditional machining has become an obvious choice due to its numerous advantages. CNC parts have better tolerances overall and their repeatability is off the charts. This is due to the fact that the performance of a human operator may get affected due to several external factors and the operator’s precision would drop with time, however, CNC can operate with the same precision throughout the day and can also prepare more parts in the same timeframe. With a CNC machining, rapid prototyping gets extremely easier and your plant can be operated without a break. Similarly, with CNC parts, the acceptable tolerances of machined products have reduced a lot because modern machines can provide tolerances up to the factor of 10-3. For high-intensity applications in sectors like aerospace and defence, this is quite important.